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Abstract

We present results of Monte Carlo simulation and chaos approximation of
a class of Markov processes with a countable or continuous set of states.
Each of these states can be written as a finite (finite case) or infinite in both
directions (infinite case) sequence of pluses and minuses denoted by ⊕ and
⊖. As continuous time goes on, our sequence undergoes the following three
types of local transformations: The first one, called flip, changes any minus
into plus and any plus into minus with a rate β. Another, called annihila-

tion, eliminates two neighbor components with a rate α whenever they are
in differents states. The third one, called mitosis, doubles any component
with a rate γ. All of them occur at any place of the sequence independently.
Our simulations and approximations suggest that with appropriate positive
values of α, β and γ this process has the following two properties. Growth:

In the finite case, as the process goes on, the length of the sequence tends
to infinity with a probability which tends to 1 when the length of the initial
sequence tends to ∞. Non-ergodicity: The infinite process is non-ergodic
and the finite process keeps most of the time at two extremes, occasionally
swinging from one to the other.

Introduction

Since the first studies of the Ising model, it became common among physicists
to recognize the qualitative difference between one-dimensional and multi-
dimensional case for all multi-component models with local interaction. This
lore crystallized in the shape of the “positive rates conjecture” (see [Liggett,
pp. 178, 201]) and was brilliantly refuted by Peter Gács ([Gacs, Gray]).
However, the cases, when a random process with one-dimensional local in-
teraction shows some form of non-ergodicity, remain non-trivial and for this
reason still attract attention; our task is to provide another case of this sort.
Our ultimate goal is to study the case, which we call infinite. In this case
configurations are infinite in both directions sequences of pluses and minuses

denoted by ⊕ and ⊖ respectively. However, this case is not yet defined rig-
orously. In addition, every computer has a finite memory, so any computer
simulation in fact is a simulation of some finite process. For these reasons
along with infinite processes, we deal with analogous finite processes, which
are easy to define and which we in fact model.
In the finite case, to avoid complications at the ends, we use configurations
called “circulars”. A circular is just a finite sequence of pluses and minuses,
but terms of this sequence, called components, are enumerated by remainders
modulo |C| where |C| is the length (that is the number of components) of the
circular, rather than natural numbers. (In the literature this is called some-
times periodic condition.) Figure 1 shows a circular C with length n = |C|
and components C0, . . . , Cn−1, whose indices 0, . . . , n − 1 are remainders
modulo n, so the index next to n − 1 is zero.

Figure 1: A circular C with |C| = n.

Transformations

As continuous time goes on, our sequence (finite or infinite) undergoes the
following types of transformation:

•Annihilation : (⊕,⊖) → Λ and (⊖,⊕) → Λ. If the

states of the components with indices x and x + 1 are dif-

ferent, both disappear with a rate α independently of the

other components. The components x − 1 and x + 2 be-

come neighbours. The length of the circular decreases by

two.

•Flip : ⊕ → ⊖ and ⊖ → ⊕. This changes the state of

one component with a rate β independently of the other

components. The length of the circular does not change.

•Mitosis : ⊕ → ⊕⊕ and ⊖ → ⊖⊖. This duplicates one

component with a rate γ independently of other compo-

nents. The length of the cicular increases by one.
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Main result

Our main results: Monte Carlo simulation and chaos approximation lead
to similar pictures of ergodicity vs. non-ergodicity and growth vs. shrink-
ing. (Figures 2 and 3.) Both of them suggest that with appropriate positive
values of α, β and γ our processes have the following two properties:

•Growth: In the finite case the length of the
circular tends to infinity with probability that
tends to one, as the length of initial circular (con-
sisting of several minuses) tends to ∞.

•Non-ergodicity: the infinite process is non-
ergodic and the finite process keeps most of
the time at two extremes, occasionally swinging
from one to the other.

Our work was motivated by success and failure of [Toom], which considered
infinite processes similar to ours with these differences: time was discrete
(which we deem unimportant), flip was asymmetric, that is it turned mi-
nuses into pluses, but not vice versa (which also is unimportant for us since
our initial configuration consists of minuses) and mitosis was absent (which
is important). [Toom] proved some form of non-ergodicity for that process
for α small enough: if the process started with “all minuses”, the percentage
of pluses always remained small. This was a success and it was improved
in [RT.1] and studied numerically in [RT.2]. The failure of [Toom] was the
impossibility to present a finite analog: in the absence of mitosis, length of
the sequence decreased in average and the configuration degenerated. In our
work this failure is removed.

Monte Carlo simulation

We approximate our infinite-space process with a Markov process with a
countable set Ω of states, where Ω is the set of circulars of all lengths. The
time t (that is, the number of iterations of our computer simulation) is
discrete and at every time step at most one transformation of the list (1),
chosen at random, takes place. Thus, in each individual experiment we ob-
tain a randomly generated sequence of circulars and the circular obtained
at time t is denoted by Ct. Its x-th component is denoted by Ct

x, where
x = 0, . . . , |Ct| − 1.
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Figure 2: White squares approximate the boundary between sug-

gested ergodicity and suggested non-ergodicity. White balls ap-

proximate the boundary between suggested shrinking and suggested

growth.

Chaos approximation

Now let us describe the chaos approximation in our case. All the components
of Ct are randomly permuted. Behavior of the resulting process essentially
has only two parameters: quantity of pluses and quantity of minuses at time
t, which we denote by X(t) and Y (t). When these quantities are large, we
may approximatedly treat them as if they were real. In this approximation,
we obtain a random process described by the following differential equations:

dX(t)

dt
= −β · X(t) + β · Y (t) + γ · X(t) − α ·

X(t)Y (t)

X(t) + Y (t)
,

dY (t)

dt
= −β · Y (t) + β · X(t) + γ · Y (t) − α ·

X(t)Y (t)

X(t) + Y (t)
.



















Since the approximation is homogeneous, we may deal of other variables

S(t) = X(t) + Y (t) and B(t) =
X(t) − Y (t)

X(t) + Y (t)

We call a number B∗ ∈ [−1, 1] a fixed point of this system if dB/dt equals
zero at B = B∗. We say that a fixed point B∗ ∈ [−1, 1] attracts a point
B ∈ [−1, 1] if the process dB/dt starting at B(0) = B tends to B∗ when
t → ∞. Given a fixed point, we call its basin of attraction or just basin

the set of points attracted by it.
We may write dS/dt as

d ln S

dt
= γ −

α

2
(1 − B2).

Let us denote by G(B) the right side of dlnS/dt.
Given two positive functions f1 and f2 of t ≥ 0, let us write f1 ≍ f2 if
f1 = O(f2) and f2 = O(f1).
Lemma. Let B(0) ∈ basin(B∗

i ), where i ∈ {1, 2, 3}. Then:

• If G(B∗
i ) > 0, then ln S(t) ≍ t.

• If G(B∗
i ) = 0, then | ln S(t)| = o(t).

• If G(B∗
i ) < 0, then − ln S(t) ≍ t.

The following diagram resumes our findings.

Figure 3:Classification for X(0) 6= Y (0). Compare this figure with

figure 2.

In the special case when X(0) = Y (0) we have B(t) = 0 for all t. But zero
is a fixed point, so the process is ergodic.

Conclusion

Our main purpose was to study a class of random processes, whose states
were infinite in both directions sequences of pluses and minuses. At the
same time we had to deal with analogous processes, whose states were fi-
nite sequences of pluses and minuses, which we called circulars. We studied
these processes using two methods: Monte Carlo and chaos approximations.
These methods led us to similar results and suggested that our processes can
grow and be non-ergodic at the same time. So we may have found another
example of 1-D non-ergodicity.
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