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Our configuration space is {0, 1}Z , whose elements are written as v = (vi) =

(. . . , v−1, v0, v1, . . .) , where all vi ∈ {0, 1} . We denote M the set of normed

measures on {0, 1}Z (i.e. on the σ -algebra generated by cylinder sets). For any v ∈

{0, 1}Z we denote δv ∈M the measure concentrated in v . For any natural number

r and non-negative transition probabilities θ(x|y1, . . . , yr) for x, y1, . . . , yr ∈ {0, 1} ,

where
∑

x θ(x|y1, . . . , yr) ≡ 1 , we define a linear operator P : M→M as follows:

for any w = (wi) ∈ {0, 1}Z the result P δw of application of P to δw is a product

measure, for which

∀ i ∈ Z, x ∈ {0, 1} : (P δw)(vi = x) = θ(x|wi+1, . . . , wi+r).

As usual, we call a measure µ ∈ M invariant if Pµ = µ and we call an operator

ergodic if for any initial measure µ the sequence P t µ tends to one and the same

limit. When speaking about our set of operators and other sets of objects, we assume

whenever necessary that they are enumerated in some constructive way.

Theorem. Consider only those of operators described above, for which all the tran-

sition probabilities θ(x|y1, . . . , yr) equal 0 or 1/2 or 1 . There is no algorithm to

decide which of these operators are ergodic.

Our method is essentially that of Kurdyumov [1, 2, 3], who proved algorithmic un-

solvability of the ergodicity problem for a class of cellular automata, where the set of

states of every site was arbitrary finite, but the transition probabililies depended only

on three neighbors. To prove our theorem, we first have to consider a case of this

sort, but we cannot simply refer to Kurdyumov’s theorem; we need to reformulate

his construction. As a by-product, we make his result stronger, because our con-

struction involves only two rather than three neighbors. Let us take any non-empty

finite set S and denote MS the set of normed measures on the configuration space
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SZ . For any non-negative transition probabilities θ(x|y, z) for all x, y, z ∈ S , where∑
x θ(x|y, z) ≡ 1 , we define a linear operator PS : MS → MS as follows: for any

configuration w = (wi) ∈ SZ , the result PS δw of application of PS to δw is a

product measure, for which

∀ i ∈ Z, x ∈ S : (PS δw)(vi = x) = θ(x|wi, wi+1).

Lemma 1. Consider only those of operators PS described above, for which all the

transition probabilities θ(x|y, z) equal 0 or 1/2 or 1 . There is no algorithm to

decide which of them are ergodic.

In proving lemma 1, we shall use the following set of Turing machines with one head

and one bi-infinite tape. To describe a Turing machine of our class, we choose two

non-empty finite sets G and H , where G is the set of tape symbols and H∪{stop}

is the set of head states. Also we choose three functions:

Ftape : G×H → G,

Fhead : G×H → H ∪ {stop},

Fmove : G×H → {−1, 0, 1}.

When the machine starts, all cells of the tape are filled with the initial symbol g1 ∈ G ,

the head is in the initial state h1 ∈ H and the head observes the 0-th cell of the

tape. At every step the head simultaneously writes into that cell of the tape, which it

observes, a new symbol according to the function Ftape , goes to a new state according

to the function Fhead , and moves one cell left or does not move or moves one cell right

along the tape according to the values −1, 0, 1 of the function Fmove respectively,

the arguments of all the three functions being the symbol in the presently observed

cell of the tape and the present state of the head. The machine stops when and if
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the head reaches the state stop . (That is why we don’t need to define our functions

when the head is in the state stop .) It is well-known that the problem of deciding,

which of these machines ever stop, is algorithmically unsolvable. Now, for any Turing

machine M we shall construct an operator PS . We set

S = Sleft × Sright × Spar × Stape × Shead, (1)

where

Sleft = Sright = Spar = {0, 1}, Stape = G, Shead = H ∪ {0}.

Accordingly, we write a generic element of S as

x = (left(x), right(x), par(x), tape(x), head(x)). (2)

We say that a state x has a left bracket if left(x) = 1 and that it has a right bracket

if right(x) = 1 . We call x even if par(x) = 0 and odd otherwise. We call x a no-

head if head(x) = 0 and a head otherwise. We call x a stop-head if head(x) = stop .

The state (0, 0, 0, g1, 0) is called empty , the state (1, 1, 1, g1, h1) is called

newborn and the state (0, 0, 0, g1, stop) is called final . For brevity we shall write

F∗(x) = F∗(tape(x), head(x)) , where ∗ means ‘tape’, ‘head’ or ‘move’. We say that a

head x wants to move left, to stay or to move right when Fmove(x) equals −1 , 0 or 1

respectively. Using i.i.d. random variables b(i) , which equal 0 or 1 with probabilities

1/2 and 1/2, we define our operator PS as follows: For any w = (wi) ∈ SZ the

measure PS δw is induced by this distribution with the following map: the i -th

component equals db(i)(wi, wi+1) , where the functions d0, d1 : S2 → S are defined

as follows:

d0(y, z) =

{
final if y or z is a stop-head,
newborn otherwise.

(3)

The definition of d1(·) consists of several rules.
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Rule 0. If y or z is a stop-head, then d1(y, z) = final .

Formulating all the other rules, we assume that neither y nor z is a stop-head.

We call a pair (y, z) ∈ S2 normal if par(y) = par(z) and at least one of y, z is a

no-head. We call a normal pair (y, z) even if par(y) = 0 and odd otherwise.

Rule 1. Whenever the pair (y, z) is not normal, d1(y, z) = empty .

It remains to define d1(y, z) when the pair (y, z) is normal. All the rules pertaining

to this case come in symmetric pairs, each pair consisting of one even rule applied to

even pairs and one odd rule applied to odd pairs. First we define d1(y, z) when the

pair (y, z) is even. For any x ∈ S let us denote x that element of S , which has

all the same components as x in the representation (2) except par(x) = 1− par(x) .

Here are the even rules:

Rule 2-even. If both y, z are no-heads, then d1(y, z) = y .

Rule 3-even. If y is a head which wants to move left, then

d1(y, z) = (0, right(y), 1, Ftape(y), 0).

Rule 4-even. If y is a head which wants to stay, then

d1(y, z) = (left(y), right(y), 1, Ftape(y), Fhead(y)).

Rule 5-even. If y is a head which wants to move right, then

d1(y, z) = (left(y), 0, 1, Ftape(y), 0).

Rule 6-even. If z is a head, which wants to move left and has a left bracket, then

d1(y, z) = (1, 0, 1, g1, Fhead(z)).
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Rule 7-even. If z is a head, which wants to move left and has no left bracket, then

d1(y, z) = (left(y), 0, 1, tape(y), Fhead(z)).

Rule 8-even. If z is a head, which wants to stay or move right, then d1(y, z) = y .

Thus all the even rules are defined. When the normal pair (y, z) is odd, the definition

of d1(·) is obtained from the definition for the even case by permuting the two values

of par(·) . permuting y and z and permuting left and right. Our operator PS is

defined.

Lemma 2. Thus constructed operator PS is ergodic if and only if the Turing

machine M stops.

Proof of lemma 2. Denote δfinal the measure concentrated in the configuration

“all components are in the state final ”. Due to the upper line in (3) and rule 0,

this measure is invariant for PS . Therefore PS is ergodic if and only if P t
S δw tends

to δfinal for any initial configuration w . Any (s, t) ∈ Z × Z+ will be called a

point and any map ρ : Z × Z+ → S will be called a realization. We shall represent

the measures P t
S δw for all t ≥ 0 as “time-slices” of one distribution on the set of

realizations. With all points (s, t) , where t > 0 , we associate i.i.d. variables b(s, t) ,

which equal 0 or 1 with probabilities 1/2 and 1/2. Using the inductive rule

ρ(s, t) = db(s,t)(ρ(s, t− 1), ρ(s + 1, t− 1))

for all s ∈ Z and t > 0 , and the initial condition ρ(s, 0) = ws for all s ∈ Z ,

we define a distribution on the set of realizations, whose restrictions when t is fixed

coincide with P t
S δw . We say that a birth occurs at a point (s, t) if b(s, t) = 1 . Now

we argue in the following two directions.
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One direction: Let us suppose that M stops after T steps and prove that P t
S δw

tends to δfinal for any initial w . Let us consider a region [s0 − N, s0 + N ] ⊂ Z ,

where N = 9T . If a stop-head is present there, it turns into final , which expands

left due to the first line of (3) and rule 0. If there is no stop-head there, then the

following scenario has a positive probability: First, at some time t0 births may occur

in all sites in the range [s0 −N, s0 + N ] , which always may happen with a positive

probability due to the second line in (3). At the next time step all of these sites

except the last one become empty a.s. due to rule 1. At the next time step birth may

occurs at the s0 -th site and this may be the only birth that occurs in the space-time

region

{(s, t) | s0 −N ≤ s < s0 + N − (t− t0), 0 < t− t0 ≤ N},

the probability of which is also positive. Under these conditions, the restrictions

of measures P t
S δw to this region are concentrated in configurations imitating the

functioning of M during time long enough for M to stop. As soon as the head

stops, it turns into final , which expands left due to rule 0. This scenario happens

somewhere on the right side of any given place almost sure, whence P t
S δw → δfinal .

The other direction: Let us assume that M never stops, i.e. continues to func-

tion forever. According to its functioning, for all s ∈ Z and t ∈ Z+ we denote:

tapeM(s, t) - the symbol in the s -th site of the tape at the moment t and headM(s, t)

- the head state of M at time t if the head is at s at this time and 0 if the head

is not there. Let us take the initial measure δempty concentrated in the configuration

“all components are in the empty state”. If PS is ergodic, then P t
S δempty must tend

to δfinal , whence the event

“the 0 -th particle is a stop-head at time Tstop ” (4)

must have a positive probability for some value of Tstop . We shall prove, however,



File mymat/algo/disc/vadim.tex on January 12, 2005 on [12] pages [8]

that this probability is zero. Given a realization ρ and a point (s, t) such that

ρ(s, t) is a head, we define two integer numbers Lρ(s, t) and Rρ(s, t) as follows:

Lρ(s, t) is the smallest integer number L such that

L < i ≤ s ⇒ left(i, t) = 0 and L ≤ i < s ⇒ right(i, t) = 0

if such a number exists; otherwise Lρ(s, t) is undefined. Rρ(s, t) is the greatest

integer number R such that

s ≤ i < R ⇒ right(i, t) = 0 and s < i ≤ R ⇒ left(i, t) = 0

if such a number exists; otherwise Rρ(s, t) is undefined. For our operator both

Lρ(s, t) and Rρ(s, t) are defined a.s for any (s, t) , where ρ(s, t) is a head. Now for

any realization ρ and any point (s, t) , where ρ(s, t) is a head, we call the sequence

ρ(Lρ(s, t), t), . . . , ρ(Rρ(s, t), t) the domain of the point (s, t) , given ρ . It is easy to

prove by induction that if a sequence x0, . . . , xn has a positive probability to occur

in a realization of P t δempty as a domain, then:



• ) All x0, . . . , xn have one and the same parity.

• ) Exactly one of x0, . . . , xn is a head.

• ) There are integer numbers ∆s and ∆t such that for all s ∈ [0, n]

tape(xs) = tapeM(s + ∆s, ∆t) and head(xs) = headM(s + ∆s, ∆t) .

Now assume that the event (4) has a positive probability. We cover the event (4) by

a countable set of events, in everyone of which the domain of the point (0, Tstop) is

specified. Take one of these events with a certain domain

ρ(Lρ(0, Tstop), Tstop), . . . , ρ(Rρ(0, Tstop), Tstop).
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Then there are integer numbers ∆s and ∆t such that

head(ρ(0, Tstop)) = headM(∆s, ∆t).

Hence from (4) M stops, which contradicts our assumption. Thus lemma 2 is proved,

whence lemma 1 immediately follows.

Proof of the theorem. We call a bit a variable, which may be equal only 0 or

1. We call a k -code or just a code any sequence of k bits. An infinite code is

an infinite sequence of bits. Given a finite code C , we call its length and denote

length(C) the number of bits in it. There is an empty code or 0-code, whose length

is 0. Given a finite or infinite code C , we denote C[i] the i -th bit in C . Also

for any positive i ≤ j ≤ length(C) we denote C[i, j] and call a sub-code of C the

sequence of its bits from the i -th to j -th one. Given finite codes C1, . . . , Cn , their

concatenation, that is the code obtained by writing them one after another, is denoted

concat(C1, . . . , Cn) . We shall also use concat(. . . , C−1, C0, C1, . . .) , concatenation

of a bi-infinite sequence of finite codes.

Suppose that a Turing machine M is given and the corresponding operator PS is

already constructed as described above. Now we construct an operator P . To do

this, first let us enumerate elements of S : S = {e1, . . . , e|S|} . For every ei ∈ S we

denote bin(ei) the |S| -code, in which the i -th bit is 1 and all the others are zeros.

For any α ∈ S and β ∈ {0, 1} we denote:

frame(α, β) = concat(bin(α), 0, β, 0110). (5)

Any (|S| + 6) -code, which has the form (5), is called a frame. Given a frame C

of the form (5), α(C) and β(C) denote α and β respectively. Let us take r =

3(|S|+ 6)− 1 and call a r -code C regular if it can be represented as
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C = concat(A, C0, C1, B),

where C0, C1 are frames. Notice that this representation of C , if it exists, is unique.

Now we can define our transition probabilities. If the code y1, . . . , yr is not regular,

then

θ(x|y1, . . . , yr) =

{
1 if x = 1,
0 if x = 0.

When y1, . . . , yr is regular, let is first define a frame Cnew as follows:

Cnew = frame(dβ(y0, y1), 0, 0),

where β = β(C0) and yi = α(Ci) for i = 0, 1 .

Now we define θ(x|y1, . . . , yr) when the code y1, . . . , yr is regular as follows: If

length(A) = 4 , then θ(x|y1, . . . , yr) = 1/2 . Otherwise

θ(x|y1, . . . , yr) =

{
1 if x = Cnew[ (|S|+ 6)− length(A) ],
0 otherwise.

Lemma 3. Thus constructed operator P is ergodic if and only if the Turing machine

M stops.

Proof. Denote δ1 the measure concentrated in the configuration “all the sites are

in the state 1”. Since the r -code consisting of ones is not regular, δ1 is invariant.

Therefore our operator P is ergodic if and only if P t δw tends to δ1 for any initial

w ∈ {0, 1}Z . Thus it is sufficient to argue in the following two directions.

One direction: Let us call a triple the code 111 . Given any v ∈ {0, 1}Z , it is

evident that if for any m ∈ Z there is n > m such that v[n, n + 2] is a triple, then
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each triple expands left, whence P t δv → δ1 . Now suppose that M stops, take any

initial w ∈ {0, 1}Z and consider two cases:

Either for any m ∈ Z there is n > m such that w[n + 1, n + (|S| + 6)] is not

regular. Then at t = 1 we obtain a triple near that area.

Or there is m ∈ Z such that for all n > m the sub-code w[n + 1, n + (|S| + 6)]

is regular. Then w on the right side of some number is a concatenation of frames.

Therefore at t = 1 we a.s. obtain infinitely many sub-codes, which are frames, whose

α is newborn . Each of them, in the absence of other births in a large enough region,

imitates the functioning of M , which leads to a stop-head. This will happen a.s. on

the right side of any number, after which there will be a triple there.

The other direction. Let us call v ∈ {0, 1}Z a frame-configuration if it can be

written as v = concat(. . . , C−1, C0, C1, . . .) , where all Ci are frames. Substituting

every frame Ci in this formula by α(Ci) , we obtain a sequence of elements of S ,

which we denote σ(v) . Let us assume that M never stops, but P t µ tends to δ1

for any initial µ and come to a contradiction. It is sufficient to take µ , which is a

product-measure, in which every vi equals:

• ) 1 and 0 with probabilities 1/2 and 1/2 if i ≡ |S|+ 2 (mod (|S|+ 6)) ;

• ) frame(empty, 0, 0)[j] , where 1 ≤ j ≤ |S| + 6 and j ≡ i (mod (|S| + 6))

otherwise.

It is easy to prove that for every t the measure P t δw is concentrated in frame-

configurations and imitates P t
S δempty in the following sense: the map σ turns P t δw

into P t
S δempty . The last part of the proof of lemma 2 shows that (P t

S δempty)(vi = x)

can be positive only if x is non-stop. Therefore a.s. no stop-head will ever appear
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and this imitation will continue to infinity, whence the measure P t δw will not tend

to δ1 . Thus our theorem is proved.

Note. A similar statement can be proved for finite analogs of processes described

above. Let us say that we have a pattern if a natural r and transition probabilities

θ(x|y1, . . . , yr) for x, y1, . . . , yr ∈ {0, 1} , where
∑

x θ(x|y1, . . . , yr) ≡ 1 , are chosen

for all x, y1, . . . , yr ∈ {0, 1} . For every pattern and every natural m we can define

a Markov chain with a finite set of states {0, 1}m , the space being the set Zm of

residues modulo m . Then there is no algorithm to decide for which of these patterns,

even if all θ(·) equal 0 or 1/2 or 1, the Markov chain is ergodic for all m large enough.

To prove this, it is sufficient to use the same set of Turing machines and the same

definition of the pattern corresponding to any Turing machine as described above.
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